
 
 
 

MMAALLPPAASS
 

 Advanced Software  
Analysis and Verification

 Example Analysis
 

 
 
 
 
 

 

 

 

 
 
 

 
 
 
  

  



 

 

 

 

 

 

 

 

 

 

 

 

This page is left intentionally blank 

  ii



 

 
 

 

 

Copyright © Atkins, 2008 

 

Issue 1 

 

 

 
 

Atkins 

 The Barbican, East Street 

 Farnham, Surrey, UK 

  

 
Visit our web-site at www.atkinsglobal.com  
 

  iii

http://www.atkinsglobal.com/


 

 
 

 

 

 

 

 

 

This page is left intentionally blank 

 

 

 

  iv



MMAALLPPAASS EXAMPLE ANALYSIS 

 

 

Contents 
 

MMAALLPPAASS EXAMPLE ...................................................................................................1 

INTRODUCTION ............................................................................................................1 
SPECIFICATION.............................................................................................................1 
C LISTING ....................................................................................................................2 
INTERMEDIATE LANGUAGE TRANSLATION ......................................................................3 
STRUCTURAL PROPERTIES.............................................................................................4 
COMPLEXITY INFORMATION ..........................................................................................5 
PROCEDURE INTERFACES ..............................................................................................6 
DATA INTEGRITY ..........................................................................................................7 
FUNCTIONAL BEHAVIOUR ..............................................................................................8 
FUNCTIONAL INTEGRITY .............................................................................................11 
COMPLIANCE ANALYSIS...............................................................................................12 
CONCLUSIONS ............................................................................................................13 

 

 

 

 

 

 

 

 

 

 

 

 

 

  v



MMAALLPPAASS EXAMPLE ANALYSIS 

 

 

 

 

 

 

 

 

 

 

This page is left intentionally blank 

  vi



MMAALLPPAASS EXAMPLE ANALYSIS 

 

MMAALLPPAASS Example 
 
  
  
 
Introduction The following example is more instructive than a theoretical 

description of each of the analysis techniques.  The example is 
a short program that implements a simplified reactor global trip 
function.  Its specification is given below: 

  

Specification A reactor has a set of 5 sensors, each with its own range of 
values in which the reactor operates safely. A protection 
system examines these sensors to determine whether they are 
within their safety limits. If they are not, the system triggers a 
partial trip signal corresponding to the sensor that is out of 
range.  The system then decides on the basis of these trip 
signals and sensor data whether to signal a full reactor – or 
global trip. The conditions for a global trip are as follows: 

 If 3 or more partial trips out of the possible 5 are 
signalled, then the reactor will trip automatically. 
This is known as a type 1, automatic trip. 

 If and only if 2 partial trips out of the possible 5 
are signalled, then the reactor will signal a global 
trip if the signals are in a particular combination. 
This is known as a type 2, combination trip.  The 
combinations of partial trips which set a global trip 
signal (type 2) are sensors 1 & 2, 1 & 4, 1 & 5, 2 & 
4, 2 & 5, 3 & 4, 4 & 5. 

 If and only if 1 partial trip out of the possible 5 is 
signalled, then depending on the percentage 
variance it shows from its permitted range, the 
reactor will trip. This is known as a type 3, 
percentage trip. In this example, the global trip 
is signalled if: 

[Amount that sensor is outside the range] / [range 
of safe values] >= 0.5 

 

Normal operation (i.e. absence of any global trip condition) is 
signalled as type 0. 

 1



MMAALLPPAASS EXAMPLE ANALYSIS 

  

 The program has been implemented in C and although valid, it 
is not intended as an example of good coding practice.  The 
basis of the implementation is that the function globtrip is 
called to update the trip status and return the trip type.  The 
logic to determine whether a particular set of partial trips 
represents either a combination trip or a percentage trip is 
implemented as the separate functions combtrip and 
perctrip respectively. 

 

C Listing int combtrip (char a1, char a2, char a3, char 
a4, char a5) { 
 
        if     ((a1==1 && a2==1) || 
                (a1==1 && a4==1) || 
                (a1==1 && a5==1) || 
                (a2==1 && a4==1) || 
                (a2==1 && a5==1) || 
                (a3==1 && a4==1) || 
                (a4==1 && a5==1)) 
 
                return (1); 
        else 
                return (0); 
 
} 
 
int perctrip (int val, int h, int l) { 
 
int temp1, temp2; 
 
/* this procedure implements partial trip rule 
3, see below */ 
 
        if (val > h) { 
                         
            temp1=((val-h)/(h-l)); 
            temp2=((val-h) % (h-l)); 
            } 
        else 
            { 
             if (val < l) { 
                 temp1=((l-val)/(h-l)); 
                 temp2=((l-val) % (h-l)); 
                 } 
            } 
        if ((temp1<=0) && (temp2>=5)) 
            return (1); 
        else  
            return (0); 
} 
 
char globtrip (char sensors[5]) { 
 
struct {char low; char hi;} sensor_range[5]; 
char i,j,k; 
char a,b,c; 
char p_trip [5]; 
char reactor_trip; 
 
/* checks the sensors to see if they are outside 
the bounds of their safe levels. Set k to one 
such instance. */ 
 
        for (i=0;i<5;i++) { 
 
            if ((sensors[i] <= 
sensor_range[i].hi) && 
                (sensors[i] >= 

 2



MMAALLPPAASS EXAMPLE ANALYSIS 

sensor_range[i].low)) 
 
                p_trip[i] = 0; 
            else { 
                p_trip[i] = 1; 
                k = i; 
                 } 
 
        } /* while */ 
 
/* we now have an array of flags called p_trip 
indicating partial trips from certain sensors */ 
 
/* we now need to determine which combinations 
of partial trips trigger a full reactor trip */ 
 
/* rule #1, the reactor will trip if there are 3 
or more partial trips */ 
 
        j = 0; 
        for (i=0; i<=5; i++) 
                j=j+p_trip[i]; 
 
        if (j>=3) 
            reactor_trip = 1; 
 
        else if (j=2)  
 
/* rule #2, the reactor will trip if there are 
partial trips in the following combinations, 
(0,1), (0,3), (0,4),(1,4), (1,3),(2,3),(3,4) */ 
        { 
             if (combtrip(p_trip[0], 
                           p_trip[1], 
                           p_trip[2], 
                           p_trip[3], 
                           p_trip[4]))  
                 reactor_trip = 2; 
        } 
 
        else if (j==1) 
 
/* rule #3, if only one sensor is outside its 
safety range then only 
trip if the percentage it has deviated is 
greater than 50% */ 
 
        { 
                   a = sensors[k]; 
                   b = sensor_range[k].hi; 
                   c = sensor_range[k].low; 
 
                   if (perctrip(a,b,c)) 
                      reactor_trip = 3; 
        } 
        else reactor_trip = 0;  
        return (reactor_trip); 
} 

 

  

Intermediate 
Language 
Translation 

C programs can be automatically translated into MMAALLPPAASS 
Intermediate Language (IL) by using the C translator.  There 
are two parts to the translation of each procedure, a 
specification and a body.  The procedure specification is used 
to define all the significant characteristics of the procedure, 
such as the inputs, outputs and their types.  The basic 
operation of MMAALLPPAASS is to analyse the procedure body and 
compare the results against its specification.   
 
 
 

 3



MMAALLPPAASS EXAMPLE ANALYSIS 

The specification generated for the procedure perctrip is: 
 
PROCSPEC perctrip( 
   IN    val : int 
   IN    h : int 
   IN    l : int 
   OUT   result_perctrip : int); 
 

The corresponding body section is: 
 
PROC perctrip; 
   VAR temp1 : int; 
   VAR temp2 : int; 
    
   [ this procedure implements partial trip rule 
3, see below ] 
   IF (val > h) 
   THEN 
      $malpas_check(h-l NE 0); 
      temp1 := (val-h) / (h-l); 
      $malpas_check(h-l NE 0); 
      temp2 := (val-h) MOD (h-l) 
   ELSE 
      IF (val < l) 
      THEN 
         $malpas_check(h-l NE 0); 
         temp1 := (l-val) / (h-l); 
         $malpas_check(h-l NE 0); 
         temp2 := (l-val) MOD (h-l) 
      ENDIF [if] 
   ENDIF [else]; 
   IF ((temp1 <= 0) AND (temp2 >= 5)) 
   THEN 
      result_perctrip := 1; 
      STOP 
   ELSE 
      result_perctrip := 0; 
      STOP 
   ENDIF [else] 
ENDPROC [perctrip] 
 

IL has many of the characteristics of structured programming 
languages in common use, and is easily learnt by any 
moderately experienced software engineer. 

MMAALLPPAASS analyses each procedure individually.  This allows the 
analysis process to be broken down into separate procedures, 
just as programs are.  The analysis is amenable to team 
working, since the analysis of procedures can be performed in 
parallel.  Although there is no predefined order in which 
analysis must be done, it is often convenient to proceed 
bottom-up, such that the analysis starts with those procedures 
that call no others, and continues with those procedures that 
only call analysed procedures.  Using this approach, a complete 
picture of the behaviour of a program can be built up. 
 

  

Structural 
Properties 

To aid in setting up the analysis sequence, one of the first 
things that MMAALLPPAASS generates is a procedure call graph.  The 
call graph for the example program is shown below1. 

                                                 
1 The calls to procedure $malpas_check are semantically neutral and have been introduced 
automatically during the translation process. There is no corresponding C source, or need to 
analyse this extra procedure, it is simply one of the mechanisms available in MALPAS to check 
code integrity (in this case it is used to demonstrate that division by zero does not occur). 

 4



MMAALLPPAASS EXAMPLE ANALYSIS 

 
Call Graph 
---------- 
 
Section:     Calls: 
--------     ------ 
 
combtrip     - 
 
perctrip     $malpas_check 
 
globtrip     $malpas_check     combtrip     perctrip 
 

Complexity 
Information 

MMAALLPPAASS can provide some simple complexity information about 
the IL model submitted for analysis.  For our example, this 
information is as follows: 

 

 Statistics for procedure combtrip: 
 
Number of nodes:                          8 
Number of arcs:                           8 
Number of identifiers:                   27 
Number of conditional nodes:              1 
 
 
          Statistics for procedure perctrip: 
 
Number of nodes:                         20 
Number of arcs:                          22 
Number of identifiers:                   27 
Number of conditional nodes:              3 
 
 
          Statistics for procedure globtrip: 
 
Number of nodes:                         56 
Number of arcs:                          63 
Number of identifiers:                   37 
Number of conditional nodes:              8 

  

 

From this follows the McCabe Cyclomatic Complexities for the 
three procedures.  They are 2, 4, and 9 respectively (simply 
one more than the number of conditional nodes).  Given that 
10 is often regarded as the highest desirable complexity for a 
single procedure, we note that all are “satisfactory” but that 
procedure globtrip is approaching the limit. 

Next MMAALLPPAASS considers the structure of each procedure and 
identifies all entry and exit points.  Ideally in high integrity 
software, all procedures and loops should be structured with 
single entry and exit points.  MMAALLPPAASS will therefore report 
problems such as unreachable statements, non-terminating 
loops and loops with multiple entries.  This form of analysis is 
of most benefit when applied to assembly code because 
assembly code lacks the high level control constructs such as IF 
and WHILE.  Also, it is common for assembly language 
programmers to minimise the space needed for their code, 
which can easily lead to poor structuring. 

For our example, acceptable structure is reported for all 3 
procedures.  Furthermore the analyst is told that the 
procedures combtrip and perctrip are loop-free, and that 
two loops were found in procedures globtrip.  The output for 
procedure globtrip is shown below. 

 5



MMAALLPPAASS EXAMPLE ANALYSIS 

  
Control Flow Summary 
==================== 
 
[CF1]  Structure acceptable 
 
Each loop has one entry 
 
Each loop has one exit 
 
No unreachable code 
 
No dynamic halts 
 
The graph was fully reduced after the following 
stages:  
      KASAI, HECHT, HK, TOTAL 
 
Loophead node numbers:      #6      #16 
 

  

Procedure 
Interfaces 

In order to proceed to the next stage of analysis, it is necessary 
to capture some additional information about the interfaces 
between the various procedures.  A statement as to how each 
output depends on the inputs is required.  Ideally the analyst 
states his expectations based on information contained in the 
program design documentation, so that MMAALLPPAASS can check that 
the code itself is consistent.  Failing this, MMAALLPPAASS can generate 
the information from the code, and the analyst can inspect it 
for correctness.  In our example2, MMAALLPPAASS generates the 
following for combtrip:  

 
DERIVES 
result_combtrip FROM [INs/INOUTs] 
a1 & a2 & a3 & a4 & a5 
 

and similarly for procedure perctrip, the generated 
information is: 

 
DERIVES 
result_perctrip FROM [INs/INOUTs] 
h & l & val 
 

For each procedure there is a statement (a “DERIVES list”) 
about each output and its dependence on inputs.  Inputs and 
outputs in this respect can be either explicit parameters or 
global variables.  Consider the above DERIVES list for 
procedure perctrip.  This states that the effect of the 
procedure is to compute the output result_perctrip as a 
function of the inputs h, l, and val.  In this instance the 
nature of the function is left abstract.  It is however possible to 
introduce named functions for use in DERIVES lists and to 
express their semantics. 

  

                                                 
2 MALPAS does not mandate similar information for the top level procedure globtrip, 
because it is not called anywhere.  MALPAS will however check the information against the 
code if it is provided. 

 6



MMAALLPPAASS EXAMPLE ANALYSIS 

Data Integrity MMAALLPPAASS considers code integrity at a number of different 
levels.  The first phase of checking looks for various forms of 
internal inconsistency.  For example: 

 variables should be initialised before they are first read 

 outputs should be written on all paths 

 outputs should be a function of inputs only (i.e. not of 
outputs or local variables) 

 the information flow through a procedure should be 
consistent with any DERIVES lists provided 

 

For our sample code, MMAALLPPAASS finds no fault with the procedure 
combtrip, but anomalies are reported for the procedures 
perctrip and globtrip.  Faults can be reported in a number 
of different ways according to the user options selected; the 
following is the report for perctrip using one of the standard 
options: 
 
[DU19]  VARs that are sometimes read when undefined 
        temp1   temp2    
 
[IF2]   Information Flow dependencies not in DERIVES 
        result perctrip  VARs/OUTs  :  temp1   temp2  
 

These are two manifestations of the same problem, namely 
that there is at least one path through perctrip on which the 
variables temp1 and temp2 are read without having first been 
written. 

 

Adding an else clause so that the first conditional in perctrip 
reads as follows can cure the problem: 

if (val > h) { 
   temp1=((val-h)/(h-l)); 
   temp2=((val-h) % (h-l)); 
   } 
else if (val < l) { 
   temp1=((l-val)/(h-l)); 
   temp2=((l-val) % (h-l)); 
   } 
else return (0); 

 

The other main aspect of data integrity considered by MMAALLPPAASS 
concerns the use of partial functions.  This is discussed more 
fully below under the heading “functional integrity”. 

 

 

  

 7



MMAALLPPAASS EXAMPLE ANALYSIS 

Functional behaviour can be investigated in MMAALLPPAASS through 
use of either the semantic or compliance analysers.  With the 
compliance analyser, the analyst has to cast the specification 
into the formal specification language of IL.  The techniques 
will be familiar to practitioners of formal methods (i.e. 
specification in mathematical notation supported by precise 
semantics and proof rules).  For each procedure the analyst 
provides pre- and post- conditions.  These may in turn be 
supported by additional types, functions and rules for algebraic 
term re-writing. 

Due to the specialist skills needed for compliance analysis, 
semantic analysis is often a more attractive proposition.  With 
this analyser, a substantially different and improved 
representation of the code is generated.  With two distinct 
views of the code to check against the specification, the 
original source and the MMAALLPPAASS representation, the analyst has 
a very much better chance to latch onto any problems that may 
exist. 

MMAALLPPAASS considers each loop free region of a procedure 
separately and represents the functional behaviour of that 
region as a series of possible execution paths through the code.  
For each path, the set of input conditions that leads to 
execution of that particular path is given together with the final 
value of each variable, expressed in terms of the program state 
on entry to the region under consideration.  In essence a set of 
parallel operations which precisely captures the code behaviour 
is provided to supplement the sequential view given by the 
source code. 

Taking our example to illustrate this concept, consider the 
procedure globtrip, in particular the final section of the 
procedure starting at the statement: 
if (j>=3) 
 
In MMAALLPPAASS terminology this is a loop free region identified 
thus:  

From node #19 to node #END   (3 semantically 
impossible paths detected) 
 
 

Functional 
Behaviour 

MMAALLPPAASS reports that there are three paths, and tabulates their 
influence on the output result_globtrip as follows: 

Paths Table 
=========== 
 
Conditions          Paths 
                  1   2   3 
C1                T   T   T 
C2                T   F   F 
C3                    T   F 
result_globtrip A11 A12 A13 
 

 The execution conditions for each of the three paths is 
expressed in terms of C1, C2 and C3.  For example path three 
executes if the following is true of the program state on entry 
to the region: 

C1 AND ¬C2 AND ¬C3 
 

The meaning of each term is provided in a separate key as 

 8



MMAALLPPAASS EXAMPLE ANALYSIS 

follows: 
 
 
Conditions 
========== 
 
  C1: i > 5 
  C2: j > 2 
  C3: _combtrip.result_combtrip(p_trip ! 0,          
p_trip ! 1, p_trip ! 2, p_trip ! 3, p_trip ! 4) = 0 

  

The outcome of executing each of the paths is expressed in the 
final row of the table, viz: 

 
result_globtrip A11 A12 A13 
 

 

where A11, A12 and A13 represent “net” assignments to 
result_globtrip that occur, expressed in terms of the 
program state on entry to the region.  As before, MMAALLPPAASS 
supplies the meaning in a separate key: 
 
 
Actions 
======= 
 
Assignments to result_globtrip 
  A11: 1 
  A12: reactor_trip 
  A13: 2 

  

Clearly there is a problem with the code.  Our expectation is 
that the result will be one of the values 0, 1, 2 or 3 and that all 
four of these outcomes are possible.  MMAALLPPAASS tells us that only 
the outcomes 1 and 2 are possible, and that there is a path 
where the initial state of the local variable reactor_trip is the 
final state of result_globtrip.  Since other parts of the 
MMAALLPPAASS output tell us that the initial state of reactor_trip is 
undefined3 this is clearly unsatisfactory.  On closer examination 
it turns out that there are two separate faults in the code.   

 

Firstly the test: 
if (j=2) 
 

should be: 
 
if (j==2) 

 

Secondly, setting reactor_trip to 0 as a final “catch all” else 
clause of the cascaded condition in this program region is 
incorrect, as some of the other paths through the conditional 
do not set it. 

 

 

                                                 
3 It is reported during data integrity analysis, and can also be found in the semantic analysis 
output for the preceding regions. 

 9



MMAALLPPAASS EXAMPLE ANALYSIS 

 Once these problems are corrected, the output from MMAALLPPAASS is 
as follows: 

 
 
From node #19 to node #END   (0 semantically 
impossible paths detected) 
 
Conditions 
========== 
 
  C1: i > 5 
  C2: j > 2 
  C3: j = 2 
  C4: _combtrip.result_combtrip(p_trip ! 0, 
p_trip ! 1, p_trip ! 2, p_trip ! 3,p_trip ! 4) = 
0 
  C5: j > 0 
  C6: j = 1 
  C7: _perctrip.result_perctrip(int 
(HI sensor_range ! k)), int(LOW (sensor_range ! 
k)),int(sensors_array ! (k + OFFSET(sensors)))) 
= 0 
 
Actions 
======= 
 
Assignments to result_globtrip 
  A11: 1 
  A12: 0 
  A13: 2 
  A14: 3 
 
Paths Table 
=========== 
 
Conditions                Paths 
                  1   2   3   4   5   6 
C1                T   T   T   T   T   T 
C2                T                     
C3                    T   T             
C4                    T   F             
C5                            F         
C6                                T   T 
C7                                T   F 
result_globtrip A11 A12 A13 A12 A12 A14 

  

This is now much nearer to the required behaviour.  There are 
four possible outcomes for output result_globtrip and they 
correspond to the possibilities described in the specification.  
Recalling that j is the number of partial trips, a type 1 trip 
occurs whenever j>2 (path 1) and a type 0 trip whenever j<=0 
(path 4).  When j=2 (paths 2 and 3), the trip type is 2 for 
critical combinations and 0 otherwise.  Finally when j=1 (paths 
5 and 6), the trip type is 3 if the percentage test fails and 0 
otherwise. 

 Careful consideration of these 8 possibilities reveals another 
possible problem. When there are 2 partial trips, a percentage 
trip (type 3) never occurs, yet there is the possibility that one 
or both partial trips can fail the percentage test.  

As discussed above, a different approach to demonstrating 
functional correctness is to use the compliance analyser. We 
will explore in outline how this might proceed for the procedure 
perctrip.  Compliance analysis attempts to prove that the 
code in the body of a procedure has the properties and 
functional behaviour stated in the PROCSPEC.  Generally 
required behaviour is expressed in the DERIVES list and 

 10



MMAALLPPAASS EXAMPLE ANALYSIS 

properties are expressed as POST conditions.  The PROCSPEC 
shown below for perctrip is set up to attempt a proof that the 
procedure correctly detects “too high” conditions. 

 

 FUNCTION toolow (integer, integer, integer): 
boolean; 
FUNCTION toohigh (integer, integer, integer): 
boolean; 
 
REPLACE(v, h, l:integer) toolow(v, h, l) 
BY (l-v/h-l) > 0 OR ((2*(l-v MOD h-l)) - (h-l)) 
>= 0; 
 
REPLACE(v, h, l:integer) toohigh(v, h, l) 
BY (v-h/h-l) > 0 OR ((2*(v-h MOD h-l)) - (h-l)) 
>= 0; 
 
PROCSPEC [perctrip] perctrip( 
      IN    val : int 
      IN    h : int 
      IN    l : int 
      OUT   result_perctrip : int) 
PRE  h>l 
POST  ('val>'h AND toohigh('val, 'h, 'l)) 
result_perctrip = 1; 

  
 

The post-condition here expresses what we are trying to prove.  
It also illustrates how the specification is typically built up by 
introducing additional functions with semantics provided for 
them through the use of term rewriting rules.  Variables are 
primed where appropriate to denote that they are initial values. 

If a pre-condition is specified, then the proof demonstration is 
performed for a restricted set of input conditions only.  In our 
example we have assumed that the high limit h, and the low 
limit l for the sensor are such that h>l.  If compliance analysis 
of the calling procedures were performed, we would get a 
proof that this assumption is correct. 

The output of compliance analysis is a “threat”, i.e. the set of 
input conditions under which the code violates the 
specification.  If the analyser reports _threat:=false then the 
code satisfies the specification.  In this instance the code is not 
correct.  Investigation of the threat will reveal that the code: 

  
if ((temp1<=0) && (temp2>=5)) 
 

should be: 
 
if ((temp1>0) || (((2*temp2)-(h-l))>=0)) 

  

Functional Integrity There is more to the code integrity than the data integrity topic 
discussed above.  For example, we need to check that array 
indexes are always in bounds, and that overflows do not occur. 

To state the problem more generally, many operations are 
partial.  They are not defined for all inputs, and therefore have 
associated with them an integrity pre-condition.  If this pre-
condition is not satisfied, then the code may or may not behave 
in accordance with expectations.  A typical operation with an 

 11



MMAALLPPAASS EXAMPLE ANALYSIS 

integrity pre-condition is division; the divisor must not be zero. 

MMAALLPPAASS supports functional integrity checking in a number of 
ways.  We will demonstrate below one form of checking 
supported by the compliance analyser. 

 The fragment of IL shown below is the translation of the 
second loop in procedure globtrip.    

 
j := char(0); 
   i := char(0); 
   LOOP [for] 
      ASSERT i>=0 AND i<=6; 
      EXIT WHEN (i > 5); 
      $malpas_check(i>=0 AND i<SIZE POINTER 
$char_array_at_p_trip); 
      j := char(j+p_trip!(i)); 
      i := char(i+1) 
   ENDLOOP [for]; 
 
 

Compliance 
Analysis 

The call to $malpas_check was added during the translation 
from C to IL.  This procedure has no outputs and so the call 
has no effect, i.e. the semantics of the program remain 
unchanged.  It does however have the following pre-condition, 
which corresponds to valid indexing of the array p_trip: 

 
i>=0 AND i<5 
 

The compliance analyser checks that the pre-conditions of all 
called procedures are satisfied, so it will report any possibility 
that p_trip is indexed out of range.  The traditional approach 
to program proving is applied, whereby an invariant condition 
has to be identified for each loop to carry the proof through the 
loop.  This is the purpose of the ASSERT statement in the IL 
text above. 

 The output from compliance analysis for this loop is shown 
below.  The assignment to _threat tells us that the loop 
invariant is correct, and the assignment to 
_false_pre_$malpas_check_#28 tells us that the array index i 
can have the value 5 in violation of an integrity requirement 
associated with statement #28. 

 
From node :    #26 
To node   :    #26 
 
MAP 
 
_false_pre_$malpas_check_#28 := i = 5 
 
_threat := false 
 
ENDMAP 

 

The underlying problem is the indexing of array p_trip.  The 
statement 

 
for (i=0; i<=5; i++) 
 

is incorrect and should read 
for (i=0; i<5; i++) 

 12



MMAALLPPAASS EXAMPLE ANALYSIS 

  

Conclusions The example analysis given above should give some idea of 
how MMAALLPPAASS can be used in the verification of code.  In this 
example, we have taken a small sample of C and applied a 
cross-section of MMAALLPPAASS analysis techniques to it. The analysis 
has: 

 confirmed a satisfactory level of complexity 

 confirmed the use of good structured programming 
practice 

 helped in classifying parameters into inputs and 
outputs 

 found problems due to uninitialised data in the 
procedures globtrip and perctrip 

 identified incorrect functionality in procedures 
globtrip and perctrip 

 detected an ambiguity in the specification concerning 
the behaviour required when two partial trips are 
present 

 found incorrect indexing of an array in globtrip 

 

 Despite our use of a small example, MMAALLPPAASS analysis of large 
complex software is perfectly feasible.  Large software 
assessments should be supported with configuration 
management and care taken when integrating separately 
analysed modules.  To date, MMAALLPPAASS has been applied 
successfully on a number of projects each with a requirement 
to verify programs in the order of 100,000 source lines long. 

 

 13


