

MMAALLPPAASS

 Advanced Software
Analysis and Verification

 Introductory Guide

Copyright © Atkins, 2008

Issue 2

Atkins

 The Barbican, East Street

 Farnham, Surrey, UK

Visit our web-site at www.atkinsglobal.com

 ii

http://www.atkinsglobal.com/

MMAALLPPAASS INTRODUCTORY GUIDE

Contents

INTRODUCTION ...1

HIGH INTEGRITY SOFTWARE...1
THE ROLE OF MMAALLPPAASS ..1
MALPAS APPROACH...2
AIM OF THIS GUIDE ..2
REST OF THE DOCUMENT ..3

MMAALLPPAASS ...4

MMAALLPPAASS CAPABILITY...4
ANALYSIS TECHNIQUES...4
IL – MALPAS INTERMEDIATE LANGUAGE ...5
APPLICATIONS ASSESSED BY MMAALLPPAASS..5

USING MMAALLPPAASS ..7

SPECIFICATIONS IN MMAALLPPAASS IL ...7
SOURCE CODE VERIFICATION ...7
COST EFFECTIVE PROCESS..8
DYNAMIC ANALYSIS SUPPORT ...8
ERROR DISCOVERY ...8
CERTIFICATION ..9
MAINTENANCE ..9
OTHER APPLICATIONS ..9
PRODUCTIVITY ...10
CONCLUSIONS ..10

ACQUIRING MMAALLPPAASS..11

LICENSING ...11
COMPATIBILITY ..11
MMAALLPPAASS TRANSLATORS ...11
TRAINING...11
MMAALLPPAASS SUPPORT SERVICE...12
SOFTWARE ASSESSMENT SERVICE ...12

 iii

MMAALLPPAASS INTRODUCTORY GUIDE

This page is left intentionally blank

 iv

MMAALLPPAASS INTRODUCTORY GUIDE

Introduction

High Integrity
Software

As systems become increasingly complex, many designers are
turning to software to provide the facilities they need. Software
can provide complex functionality at low power, low weight and
high reliability. Unfortunately, realising all this potential has
proved difficult. In addition to simple coding mistakes, software
is highly prone to systematic “designed-in” errors. For the
majority of applications, errors may not matter unduly, so long
as they rarely cause failures; but in safety critical applications,
any failure can have dire consequences. To obtain confidence
in the software specification and its implementation, a process
of rigorous verification is needed.

The Role of MMAALLPPAASS MMAALLPPAASS is one of the most rigorous verification tools on the
market today. By subjecting software to comprehensive
analysis, MMAALLPPAASS will reveal program structure, examine
functionality in detail, and check conformance with the
specification. Users throughout the world (Germany, Canada,
UK, France, Australia) in sectors varying from security,
aerospace, defence, nuclear power and transport have
employed MMAALLPPAASS to:

 Improve the integrity of their systems

 Demonstrate to regulatory bodies and customers that
their programs are error free

 Create critical software more cost effectively, i.e.
delivered on time and within budget

 1

MMAALLPPAASS INTRODUCTORY GUIDE

Malpas Approach The MMAALLPPAASS approach to static analysis is being used
increasingly in critical software development and verification. It
has important advantages compared with other verification
strategies:

 Coverage - all possible paths through the program are
analysed, not just those foreseen by the programmer

 Cost-effectiveness - MMAALLPPAASS does not require the
production of expensive test-rigs or the collection of
test datasets. Because any individual module of code
can be analysed as soon as it is completed, any quality
problems will be uncovered early in the lifecycle

 Versatility - MMAALLPPAASS remains effective throughout the
whole lifecycle, from specification through to in-service
maintenance. MMAALLPPAASS is also available for a number of
computing platforms from VAX to Windows NT

Aim of this Guide

This guide aims to:

 give project managers and software engineers
information on the main features of MMAALLPPAASS

 outline the practical benefits of using MMAALLPPAASS

 indicate how MMAALLPPAASS can be acquired and supported

The MMAALLPPAASS Analysis Process

MMAALLPPAASS supports a hierarchy of analysis techniques of
increasing rigour, from structural analyses to formal proof.

 2

MMAALLPPAASS INTRODUCTORY GUIDE

Rest of the
Document

 Chapter 2 gives a brief overview of this hierarchy.

 Chapter 3 discusses the practical usage of MMAALLPPAASS and
its effects on software certification productivity, and
maintenance.

 Chapter 4 describes the MMAALLPPAASS licensing and training
services provided by Atkins.

 For those interested in the details of the technical
capabilities of MMAALLPPAASS, a short but realistic example of
MMAALLPPAASS analysis is provided in a companion document,
“MMAALLPPAASS – Advanced Software Analysis and
Verification – Example Analysis”.

 3

MMAALLPPAASS INTRODUCTORY GUIDE

MMAALLPPAASS

MMAALLPPAASS Capability

MMAALLPPAASS supports a hierarchy of six static analysis techniques,
each of which investigates a different aspect of programs, and
may be applied individually or sequentially. Each successive
technique in the MMAALLPPAASS hierarchy is designed to yield
increasingly rigorous insights into the structure and logic of a
program.

 Control Flow

 Data Use

 Information Flow

 Path Complexity

 Semantic

 Compliance

The MMAALLPPAASS Hierarchy of Analysers

Analysis Techniques Control Flow Analysis - identifies unstructured control flow
in a program, for example, multiple entry and exit points,
unreachable code, and infinitely looping dynamic halts. It gives
an initial feel for the structure of the program and is particularly
useful for assessing assembly code that lacks the high-level
language control structures.

Data Use Analysis - identifies all the inputs and outputs of
each procedure whether documented or not, including any
surreptitious use of global data. Data handling errors are also
revealed: for example, there are checks that each variable is
initialised before being read.

Information Flow Analysis - each procedure is analysed to
deduce the information on which it outputs depend. The
analysis of these dependencies is the first step toward

 4

MMAALLPPAASS INTRODUCTORY GUIDE

identifying serious errors in the dynamic behaviour of the
program, such as unwanted side-effects.

Path Assessor - the number of paths through the code is
reported for each procedure. This complexity measure has a
direct bearing on the difficulty, and therefore the cost, of
testing the procedure.

Semantic Analysis - this analysis re-expresses the complete
semantics of the procedure in a formal mathematical notation
that is more explicit than the code. The analyst can use this
algebraic representation to check for discrepancies between the
program’s behaviour and its specification.

Compliance Analysis - supports a formal proof that a
procedure behaves in accordance with its specification; in other
words, that if the required precondition holds when the
procedure is called, the required postcondition must hold when
it terminates. Where this is not the case, compliance analysis
will identify the input values for which the procedure will fail.

IL – MALPAS
Intermediate
Language

MMAALLPPAASS is used on software source code, but prior to analysis
it is necessary to model the source code in the MMAALLPPAASS
Intermediate Language (IL). Given a translation of the code
into the IL, MMAALLPPAASS can be applied programs of any
programming language. The construction of the IL model is a
highly instructive exercise in its own right; users have found
that re-expressing a program using the formal rigour of the IL
quickly reveals ambiguities in the code. Errors and potential
improvements often become apparent even at this early stage.
The translation of the source code into IL may be performed
either by hand or by use of an automatic translator. Several
automatic translators are available for a variety of languages
including Ada, C, Pascal, CORAL 66, PL/M-86, FORTRAN, Intel
ASM86 and Motorola 6809.

Applications
Assessed by
MMAALLPPAASS

MMAALLPPAASS has been applied to safety, security, mission, and
business critical applications. Some of these are listed below:

 The Temelin Nuclear Power Station - Primary & Diverse
Reactor Protection Systems

 The Sizewell B Nuclear Power Station - Primary
Protection System (see Refs. 7 & 10)

 Lockheed Martin C130J (various safety critical LRUs)

 The BR710 Digital Engine Control Unit

 Inlet Guide Vane Controller for Pegasus engine (for the
Harrier jump-jet)

 The Swordfish Torpedo Arming System

 A Smart Timer Fuse Program

 An Ammunition Storage Control System

 The BAE Systems Tornado Auto Wing Sweep System

 5

MMAALLPPAASS INTRODUCTORY GUIDE

 The Merlin Helicopter Stores Management System

 The Astra Hawk Fly-by-Wire Control System

 The Dungeness B Single Channel Trip System

 An Airborne Collision Avoidance System

 A Flight Vehicle Self-Destruct System

 The Australian Railway Signalling System

 A Gas Distribution Network Control System

 Secure Software for Government and Armed Services
Communications

 A Medical Infusion Pump

 In practice, non-critical applications will benefit from MMAALLPPAASS
analysis.

 6

MMAALLPPAASS INTRODUCTORY GUIDE

Using MMAALLPPAASS

The versatility of MMAALLPPAASS has been proven through more than
a decade of development and use throughout the software
development life cycle, in a broad range of sectors.

Specifications in
MMAALLPPAASS IL

The MMAALLPPAASS Intermediate Language (IL) is a powerful notation
that can be used to specify any complex problem in a rigorous
way. The specification can be written in any of the common
specification styles; algebraic, functional, or model-based.

Source Code
Verification

The normal assessment methods for source code fall into two
distinct categories: Dynamic Analysis (e.g. animation, testing)
and Static Analysis. Dynamic Analysis works by exercising the
code over a set of test conditions. It is based on engineering
judgement: test conditions have to be chosen to maximise the
likelihood that if the code behaves correctly for the test
conditions, it will work when it encounters all other conditions.
Static Analysis is based on logic: verification is by logical
argument rather than execution. It can be applied with varying
degrees of rigour, from code walkthroughs and inspections
through to fully formal proof. MMAALLPPAASS can be used to support
both dynamic and static analyses, to any level of rigour, but it
is most closely associated with Static Analysis. A realistic
illustration of its capabilities is given in the companion
document, “MMAALLPPAASS – Advanced Software Analysis and
Verification – Example Analysis”.

In practice, dynamic and static analyses are complementary:
testing can be used to check the assumptions in logical
arguments and logical arguments can be used to check
deficiencies in testing.

Dynamic Analysis provides confidence that the code works
reliably in foreseeable situations. It establishes that the
software and hardware work together as planned, and provides
some assurance that a compiler has not introduced unwanted
errors. However, latent errors may emerge only on rare
occasions and may be very difficult to trace. Furthermore,
latent errors may be activated as a side-effect of maintenance.

 7

MMAALLPPAASS INTRODUCTORY GUIDE

Static Analysis is a significant aid to assessments of the
technical difficulties that could emerge when code has to be
modified. It is therefore a sound indicator of future lifecycle
costs.

Cost Effective
Process

MMAALLPPAASS supports cost-effective Static Analysis by:

 breaking down the assessment process into definable
subtasks, which aids in formalising and planning the
assessment task

 providing automated support for the consideration of
the critical code for all input conditions and all
execution paths, and not just those that have been
tested

 focusing attention on the parts of the code most likely
to contain errors

Dynamic Analysis
Support

A well-focused Dynamic Analysis requires careful consideration
of the code under test. MMAALLPPAASS supports dynamic analysis by:

 identifying the inputs upon which critical behaviour
depends

 identifying every feasible path through the code in
order to assess the extent of test coverage that can be
achieved

 permitting animation of the specification to find the
expected outputs

Error Discovery Practical experience shows that a great variety of software
errors can be found by using MMAALLPPAASS, from simple coding
errors, through to unforeseen pathological behaviours and
faulty error-handling routines. Many of the examples in the
following list were found in software that was previously
thought to have been adequately tested:

 incorrect choice of logical operators: e.g. the use of
“less than” instead of “less than or equal to”

 uncommon but pathological inputs: e.g. a 32 bit
averaging routine was found to fail if both inputs were
800000116

 unguarded paths through the code that would be
hazardous if executed

 corruption of registers across assembly language
procedure calls

 dynamic type errors: e.g. confusion a pointer-to-byte
value with pointer-to-word value in an assembler

 built-in-test failures: e.g. failure of a RAM testing
algorithm for particular sizes of memory

 8

MMAALLPPAASS INTRODUCTORY GUIDE

 misinformation: incorrect error reporting on an
operator maintenance panel

 faulty configuration of hardware: erroneous mixing of
small and large memory models for the 80x86
processor

 generation of false alarms in safety monitoring systems

Certification MMAALLPPAASS is widely recognised as providing the full range of
static analysis techniques mandated in current standards such
as Def Stan 00-55 (Ref. 4), IEC 61508 (ref. 5) and DO-178B
(Ref. 6). In addition, it has become a de-facto standard for
some assessment and regulatory bodies. For example, analysis
of military safety critical airborne systems is encouraged up to
Semantic Analysis level. The nuclear industry prefers analysis
right through to Compliance Analysis for safety critical code.
The security industry defines the levels of Static Analysis
required for different levels of security in terms that map
directly onto the MMAALLPPAASS analysis hierarchy.

Maintenance If the documentation is of such poor quality that it cannot be
used to verify the code, an alternative use of MMAALLPPAASS is to
reverse engineer proper documentation. MMAALLPPAASS can rapidly
build up a complete picture of the behaviour of a piece of code,
which is then used to drive the code documentation. Engineers
can inspect MMAALLPPAASS reports to decide if the behaviour of the
code is sensible within the context of the application. Such
documentation will identify all interactions within the code, and
so make it significantly easier to maintain.

Other Applications As experience with the tool has grown, novel applications for
MMAALLPPAASS have been found. Two such applications are described
here.

In a fly-by-wire aircraft control system, it was necessary to
ensure that certain tasks were completed within a certain time.
MMAALLPPAASS was used to calculate the worst case run time for
these tasks. Firstly, the assembly code was translated into
MMAALLPPAASS IL in such a way as to highlight the amount of time
taken by each instruction. Secondly, the IL was submitted for
Semantic Analysis that identified the time for each path
through the program. The worst-case time could readily be
identified.

In a critical nuclear power application, concern had been
expressed about the possibility of errors introduced by the
compiler used for a safety critical application. Typically,
compilers are not developed to safety critical standards, and so
it was decided that the object code must be independently
verified against the source code. This was achieved by
translating both the source code and the object code into IL
and then comparing the programs using MMAALLPPAASS Compliance
Analysis. The whole process could be highly automated since

 9

MMAALLPPAASS INTRODUCTORY GUIDE

both the source and object languages were rigorously defined
(Ref. 9).

Productivity The effort required to use MMAALLPPAASS depends on several factors
such as analyst experience, choice of programming language
and style, the standard of documentation, and the amount of
code to be analysed, and the depth to which the MMAALLPPAASS
analysis hierarchy is to be applied. However, the table below
can be used as a rule-of-thumb estimate of analysis time. As
experience is gained on a particular application, more accurate
estimates of the time taken can be calculated specific to the
application.

Analysis technique Source lines per day
Control Flow Analysis,
Data Use Analysis and
Information Flow Analysis

100-500

Semantic Analysis 20-100
Compliance Analysis 10-50

Conclusions MMAALLPPAASS is a powerful tool for assuring that code is fit for
purpose and correct. It can be used to support many parts of
the software development process and has been proven across
a wide variety of applications. Many supplier organizations,
assessment laboratories, and regulatory bodies, having
recognised the value of static analysis, now insist on its use for
safety and security critical code. The tool is fully supported by
Atkins, who also offer an independent assessment service.

 10

MMAALLPPAASS INTRODUCTORY GUIDE

Acquiring MMAALLPPAASS

Licensing

Worldwide marketing rights for MMAALLPPAASS are held by Atkins.

The MMAALLPPAASS licensing system is very flexible. Typically, project
specific licenses are granted, but the tool can also be leased.
Evaluation packages are also available which include the
training, support, and documentation needed to become
familiar with the toolset.

Compatibility MMAALLPPAASS is compatible with all systems running Microsoft
Windows 9x/NT/2000 and XP.

MMAALLPPAASS Translators The MMAALLPPAASS product range includes automatic translators for
Ada83, C, Pascal, FORTRAN, Intel PL/M86, CORAL66, ASM86
and Motorola M6809. If a suitable automatic translator is not
available, then two options are possible.

Hand Translation: For moderate amounts of code, it is possible
to translate the source code into IL by hand. The flexibility of
IL makes this a reasonable approach, particularly for assembler
code. In the past, such hand translation has been used for
M68020 and Z80 code.

Bespoke Translator: We have produced several bespoke
translators at the request of users. Alternatively, it is possible
to customise an existing automatic translator in the light of
project-specific programming practices.

Training We offer a range of courses specific to the MMAALLPPAASS tool, and
also more wide ranging courses on static analysis and software
verification. These include:

 Software Static Analysis (2 days)

 MMAALLPPAASS Introductory Course (3 days)

 Compliance Analysis Workshop (3 days)

The 3 day introductory course aims to:

 11

MMAALLPPAASS INTRODUCTORY GUIDE

 Illustrate MMAALLPPAASS's potential as a verification tool to
improve software productivity and enhance integrity

 Give delegates extensive hands-on experience with the
tool so they can use it with confidence on their own
applications

 Demonstrate how MMAALLPPAASS handles many of the major
computing languages in use today e.g. Ada, C, Pascal
and Assembler

MMAALLPPAASS Support
Service

In addition to developing the tool and presenting a range of
training courses, Atkins provides support services on payment
of an annual support fee:

 the annual MMAALLPPAASS User Group run by the users with
administrative support from Atkins

 on-line telephone support and advice covering,
installation and general trouble shooting

 seminars on the background and theory behind
MMAALLPPAASS and Static Analysis

The optional support service includes product maintenance with
regular program updates supplied to users at no additional
charge.

Software
Assessment Service

Finally, rather than climbing the learning curve, several
customers prefer to leave the work to Atkins. We have a team
of experienced analysts with a broad knowledge of software
engineering who can offer a fully independent software
assessment service. This can range from an assessment of the
software development process, to a detailed MMAALLPPAASS analysis
of the source code itself.

 For more information on any of the above, please contact:

Chris Sampson – Software Assessment Consultant
chris.sampson@atkinsglobal.com

Andy Hodgkinson – MMAALLPPAASS Products Manager
andy.hodgkinson@atkinsglobal.com

 12

mailto:chris.sampson@atkinsglobal.com
mailto:andy.hodgkinson@atkinsglobal.com

